Examen de Matemáticas – 3º de ESO

Instrucciones: en todos y cada uno de los ejercicios es obligatorio hacer un desarrollo o procedimiento, por breve que sea, que lleve a la solución.

1. Realiza las siguientes operaciones con radicales, simplificando y extrayendo factores del resultado, si es posible: (1 punto; 0,5 puntos por apartado)
 a) $\sqrt[3]{x} \cdot \sqrt[4]{x^3} =
 b) \frac{\sqrt[3]{15}}{\sqrt[2]{9}} =

2. Simplifica todo lo que puedas, aplicando convenientemente las propiedades de los radicales. Extrae factores caso de que sea posible. (2 puntos; 1 punto por apartado)
 a) $\left(2\sqrt[3]{6}\right)^4 =
 b) \sqrt[3]{4\sqrt[2]{a^6}} =

3. Dados los polinomios:
 $P(x) = -2x^4 + x^2 - 3x + 1$, $Q(x) = 2x^3 + x^2 + 1$ $R(x) = -x^2 - 2x + 2$
 realiza las siguientes operaciones y ordena el polinomio resultante. (4 puntos; 1 punto por apartado)
 a) $P(x) - Q(x) - R(x)$
 b) $Q(x) - 2P(x) + 3R(x)$
 c) $Q(x) \cdot R(x)$
 d) $\left[R(x) + Q(x)\right] \cdot P(x)$

4. Realiza la división $P(x) \div R(x)$, donde $P(x)$ y $R(x)$ son los mismos polinomios del ejercicio anterior. Indica quién es el cociente y el resto. (1 punto)

5. Realiza la división $\left(-2x^3 - x^2 - x^2 + 2x - 3\right) \div (x - 2)$ utilizando la regla de Ruffini. Indica quién es el cociente y el resto. (1 punto)

6. Hallar el valor de k para que al efectuar la división $\left(-3x^3 + x^2 - kx + 3\right) \div (x + 1)$ el resto sea 0 (división exacta). (1 punto)

Consejo: en los ejercicios de raíces, antes de aplicar las propiedades, debes de factorizar previamente aquellos números que no sean primos.
Soluciones:

1. a) \(\sqrt{3} \sqrt[4]{x^3} = \sqrt[12]{x^4} \sqrt{x^9} = \sqrt[12]{x^{13}} = x^{\frac{1}{12}} \sqrt[12]{x} \)

 b) \(\sqrt{\frac{15}{9}} = \sqrt{\frac{3 \cdot 5}{3^2}} = \sqrt{\frac{3^2 \cdot 5^2}{3^3}} = \sqrt{\frac{5^2}{3}} = \frac{5}{\sqrt{3}} \)

2. a) \((\sqrt{3 \sqrt{6}})^4 = (\sqrt{3 \sqrt{2 \cdot 3}})^4 = \sqrt{3^4 \sqrt{2^4 \cdot 3^4}} = \sqrt{3^8 6^2 \cdot 3^{12}} = \sqrt[20]{2^{12}} 2 = 2 \cdot 3^3 \sqrt{3^2} = 54 \sqrt{3} \)

 b) \(\sqrt{\frac{3 \sqrt{a}}{a}} = \frac{3 \sqrt{a}}{a} = \frac{\sqrt{a}}{a} \)

3. a) \(P(x) - Q(x) - R(x) = (-2x^4 + x^2 - 3x + 1) - (2x^3 + x^2 + 1) - (-x^2 - 2x + 2) = -2x^4 + x^2 - 3x + 1 - 2x^3 - x^2 - 1 + x^2 + 2x - 2 = -2x^4 - 2x^3 + x^2 - x - 2 \)

 b) \(Q(x) - 2P(x) + 3R(x) = (2x^3 + x^2 + 1) - 2(-2x^4 + x^2 - 3x + 1) + 3(-x^2 - 2x + 2) = 2x^3 + x^2 + 1 + 4x^4 - 2x^2 + 6x - 2 - 3x^2 - 6x + 6 = 4x^4 + 2x^3 - 4x^2 + 5 \)

 c) \(Q(x) \cdot R(x) = (2x^3 + x^2 + 1)(-x^2 - 2x + 2) = -2x^5 - 4x^4 + 4x^3 - x^4 - 2x^3 + 2x^2 - x^2 - 2x + 2 = -2x^5 - 6x^4 + 2x^3 + x^2 - 2x + 2 \)

 d) \([R(x) + Q(x)] \cdot P(x) = [(x^2 - 2x + 2) + (2x^3 + x^2 + 1)](-2x^4 + x^2 - 3x + 1) = (2x^3 - 2x + 3)(-2x^4 + x^2 - 3x + 1) = -4x^7 + 2x^5 - 6x^4 + 2x^3 + 4x^2 - 2x^3 + 6x^2 - 2x - 6x^4 + 3x^2 - 9x + 3 = -4x^7 + 6x^5 - 12x^4 + 9x^2 - 11x + 3 \)

4. \[
\begin{array}{c|ccc}
& x^2 - 3x + 1 & -x^2 - 2x + 2 \\
\hline
2x^4 + 4x^3 - 4x^2 & 2x^2 - 4x + 11 \\
-4x^3 - 3x^2 - 3x + 1 & -4x^3 - 8x^2 + 8x \\
-11x^2 + 5x + 1 & 11x^2 + 22x - 22 \\
\hline
& 27x - 21 \\
\end{array}
\]

Cociente: \(C(x) = 2x^2 - 4x + 11 \); Resto: \(R(x) = 27x - 21 \)
5. El dividendo ordenado es \(-x^5 - 2x^3 - x^2 + 2x - 3\). El divisor es \(x - 2\). Aplicando la regla de Ruffini con \(x = 2\) tenemos:

\[
\begin{array}{cccccc}
2 & -1 & 0 & -2 & -1 & 2 & -3 \\
 & -2 & -4 & -12 & -26 & -48 \\
\hline
 & -1 & -2 & -6 & -13 & -24 & -51 \\
\end{array}
\]

Cociente: \(C(x) = -x^4 - 2x^3 - 6x^2 - 13x - 24\); Resto: \(R = -51\)

6. Aplicando la regla de Ruffini:

\[
\begin{array}{cccc}
-3 & 1 & -k & 3 \\
 & 3 & -4 & k + 4 \\
\hline
 & -3 & 4 & -k - 4 & k + 7 \\
\end{array}
\]

7. Entonces, como el resto de la división es 0, \(k + 7 = 0\), y entonces \(k = -7\).