Examen de Matemáticas – 3º de ESO

Instrucciones: en todos y cada uno de los ejercicios es obligatorio hacer un desarrollo o procedimiento, por breve que sea, que lleve a la solución.

1. Realiza las siguientes operaciones con radicales, simplificando y extrayendo factores del resultado, si es posible: (1 punto; 0,5 puntos por apartado)
   a) $\sqrt{18} \cdot \sqrt{36} = \ ?$
   b) $\frac{\sqrt{12}}{\sqrt{2}} = \ ?$

2. Simplifica todo lo que puedas, aplicando convenientemente las propiedades de los radicales. Extrae factores caso de que sea posible. (2 puntos; 1 punto por apartado)
   a) $\left(\sqrt{2} \cdot \sqrt{4}\right)^3 = \ ?$
   b) $\sqrt[3]{\sqrt{8}} = \ ?$

3. Dados los polinomios:
   $P(x) = 2x^5 - 3x^3 + 2x - 1$, $Q(x) = -x^3 + 2x^2 - 3$ $R(x) = 2x^2 - x + 1$
   realiza las siguientes operaciones y ordena el polinomio resultante. (4 puntos; 1 punto por apartado)
   a) $P(x) - Q(x) - R(x)$
   b) $3Q(x) - P(x) - 3R(x)$
   c) $Q(x) \cdot R(x)$
   d) $\left[ R(x) - Q(x) \right] \cdot P(x)$

4. Realiza la división $P(x) ÷ Q(x)$, donde $P(x)$ y $Q(x)$ son los mismos polinomios del ejercicio anterior. Indica quién es el cociente y el resto. (1 punto)

5. Realiza la división $\left( -x^4 + 2x^3 + 3x^2 - x + 3 \right) ÷ (x + 2)$ utilizando la regla de Ruffini. Indica quién es el cociente y el resto. (1 punto)

6. Hallar el valor de $k$ para que al efectuar la división $\left( 2x^3 - x^2 + kx - 3 \right) ÷ (x - 1)$ el resto sea 0 (división exacta). (1 punto)

Consejo: en los ejercicios de raíces, antes de aplicar las propiedades, debes de factorizar previamente aquellos números que no sean primos.
Soluciones:

1. a) \( \sqrt{18} 2 \sqrt{36} = \sqrt{2 \cdot 3^2 \cdot 2^2 \cdot 3^2} = \sqrt{2^4 \cdot 3^4} = 2^2 \cdot 3^2 = 4 \cdot 9 = 36 \)

   b) \( \frac{\sqrt{12}}{\sqrt{2}} = \frac{\sqrt{2} \cdot \sqrt{3}}{\sqrt{2}} = \sqrt{3} \)

2. a) \( \left( \sqrt{2} \sqrt{4} \right)^3 = \left( \sqrt{2^3 \cdot 2^2} \right)^3 = \sqrt{2^9} \sqrt{2^{24}} = \sqrt{2^{33}} = 2^{\frac{33}{2}} = 8 \sqrt{2} = 4 \sqrt{2} \)

   b) \( \sqrt{3} \sqrt{4} = \sqrt{3 \cdot 4} = \sqrt{12} \)

3. a) \( P(x) - Q(x) - R(x) = (2x^5 - 3x^3 + 2x - 1) - (-x^3 + 2x^2 - 3) - (2x^2 - x + 1) = 2x^5 - 3x^3 + 2x - 1 + x^3 - 2x^2 + x - 1 = 2x^5 - 2x^3 - 4x^2 + 3x + 1 \)

   b) \( 3Q(x) - P(x) - 3R(x) = 3(-x^3 + 2x^2 - 3) - (2x^5 - 3x^3 + 2x - 1) - 3(2x^2 - x + 1) = -3x^3 + 6x^2 - 9x^5 + 3x^4 - 2x^2 + 6x^2 + 3x - 3 = -2x^5 + x - 11 \)

   c) \( Q(x) \cdot R(x) = (-x^3 + 2x^2 - 3)(2x^2 - x + 1) = -2x^5 + x^4 - x^3 + 4x^4 - 2x^3 + 2x^2 - 6x^2 + 3x - 3 = -2x^5 + 5x^4 - 3x^3 - 4x^2 + 3x - 3 \)

   d) \( \left[ R(x) - Q(x) \right] \cdot P(x) = \left[ (2x^2 - x + 1) - (-x^3 + 2x^2 - 3) \right] (2x^5 - 3x^3 + 2x - 1) = (2x^2 + x^3 - 2x^2 + 3)(2x^5 - 3x^3 + 2x - 1) = (x^3 - x + 4)(2x^5 - 3x^3 + 2x - 1) = 2x^8 - 3x^6 + 2x^4 - x^3 - 2x^6 + 3x^4 - 2x^2 + x + 8x^5 - 12x^3 + 8x - 4 = 2x^8 - 5x^6 + 8x^5 + 5x^4 - 13x^3 - 2x^2 + 9x - 4 \)

4. \( \begin{array}{c|ccc}
2x^5 & -3x^3 & +2x & -1 \\
-2x^5 & +4x^4 & -6x^2 & \\
\hline
4x^4 & -3x^3 & -6x^2 & +2x & -1 \\
-4x^4 & +8x^3 & -12x & \\
\hline
5x^3 & -6x^2 & -10x & -1 \\
-5x^3 & +10x^2 & -15 & \\
\hline
4x^2 & -10x & -16 & 
\end{array} \)

Cociente: \( C(x) = -2x^2 - 4x - 5 \); Resto: \( R(x) = 4x^2 - 10x - 16 \)
5. El dividendo ordenado es $2x^6 - x^4 + 3x^2 - x + 3$. El divisor es $x + 2$. Aplicando la regla de Ruffini con $x = -2$ tenemos:

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>0</th>
<th>-1</th>
<th>0</th>
<th>3</th>
<th>-1</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td>-4</td>
<td>8</td>
<td>-14</td>
<td>28</td>
<td>-62</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-4</td>
<td>7</td>
<td>-14</td>
<td>31</td>
<td>-63</td>
<td>129</td>
</tr>
</tbody>
</table>

Cociente: $C(x) = 2x^5 - 4x^4 + 7x^3 - 14x^2 + 31x - 63$; Resto: $R = 129$

6. Aplicando la regla de Ruffini:

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>-1</th>
<th>$k$</th>
<th>-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>$k + 1$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>$k + 1$</td>
<td>$k - 2$</td>
</tr>
</tbody>
</table>

Entonces, como el resto de la división es 0, $k - 2 = 0$, y entonces $k = 2$. 